Development of a High-Resolution Precipitation Climatological Dataset from the Climatology-Calibrated Precipitation Analysis (CCPA)

Yan Luo^{1,2}, Yuejian Zhu¹, and Dingchen Hou¹

¹ Environmental Modeling Center/NCEP/NWS/NOAA ² I. M. Systems Group, INC. at EMC/NCEP

Acknowledgements

Bo Yang and Bo Cui

AMS 93rd Annual Meeting 27th Conference on Hydrology 6-10 January, 2013, Austin, TX

Introduction

- NCEP/EMC Climatology Calibrated Precipitation Analysis (over CONUS at 6h, ~5km resolution)
- Provides as a proxy of truth for precipitation forecast calibration and downscaling
- Focus of this work is to develop a dataset of precipitation climatology from CCPA
- The method of L-moments is applied

Background

What is CCPA?

- A dataset of precipitation analysis, over CONUS at 6h, ~5km resolution
- Statistically adjust Stage IV data at CPC analysis grid so their climatology is consistent with the CPC dataset, and then downscale back to the original Stage IV grid.
- Advantages:
 - Higher reliability of the CPC dataset, and
 - Higher spatial and temporal resolution of the Stage IV dataset
- Statistical adjustment Linear regression: $CPC = a \cdot ST4 + b$
- Products:
 - Operational since July 2010
 - Twice daily
 - Grids: HRAP (primary), and NDGD, 0.125, 0.5 and 1.0 degree resolutions (byproducts)
 - Period:2002~present

Motivation

Precipitation climatology products are desired to be extensively used for several studies on

- QPF/PQPF calibration
- Hydrological applications which include initiating regional/global hydrological forecast model
- Model forecast evaluation
- Generation of extreme forecast index (EFI) or anomaly forecast.
- Help to enhance the quality of the precipitation analysis
- Others

Methodology

- Method of L-moments (Hosking, 1990 and Hosking and Wallis, 1997)
- Why L-moment method?
 - Precipitation data is highly skewed
 - Only ten years of CCPA maybe not sufficient data samples to construct climatology
 - Advantages of L-moments
 - ✓ Efficiency and robustness
 - ✓ Less affected by sample size
- Assumption: Precipitation estimates follow the Gamma distribution
 - References: Thom(1958), Friedman and Janes (1957), Barger et al. (1959), Greenwood and Durand (1960), Shenton and Bowman (1970)

Data sample collection and processing

CCPA at 1*1 degree and 24 hours accumulation

- Accumulate 6-houly analysis into daily with 24 hours accumulation
- Period 10 year (2002-2012)
- Domain CONUS only
- Increase sample size by using
 - 5 points (neighborhood locations)

i+1, j

i, j+1

i, j

i, j-1

i-1, j

- 5 days time window (T-2, T-1, T0, T+1 and T+2)
- Up to 250(=10x5x5) samples in total for each day of the year and each grid point

Estimation Procedures

Steps to compute precipitation frequency curve (distribution):

- 1. L-moments and L-moment ratios (L-location, L-scale, L-skewness, and L-kurtosis) were computed for the CCPA sample data set
- 2. These ratios were used to find a set of Gamma distribution parameters, defining a single probability distribution function for each day of the year and each grid point over CONUS
- 3. Every 10 percentages of probability were calculated based on the Gamma parameters

L-moments and L-moment ratios

Estimation of Gamma parameters

Proposed climatology products

At 1*1 deg (lat/lon) over CONUS

- Daily mean and median
- Conditional daily mean and median (non-zero precipitation only; no rain events are excluded)
- Every daily 10 percentages of probability (i.e. 10 climatologically equally likely bins) for each grid point
- Climatological variances (for grid points, domains)
- Expand to finer spatial and temporal resolutions in the future

Results

Daily every ten percentages of probability

Comparison of CDF

Comparison of monthly precipitation climatology

Unit: mm/month

Summary

1. Daily precipitation climatology in CCPA

- Calculated using the L-moment method with an assumption of a Gamma distribution for each day of the year and each 1*1 degree grid point over CONUS.
- Provided reasonable fittings of data sample with Gamma distribution.
- When summed daily data up to monthly, they are fairly close to CPC monthly climatology.

2. Future work:

- Product expansion:
 - Domain: CONUS only -> other areas
 - Resolution:
 - Space: 1*1 deg lat x lon -> 5KM NDGD grid
 - Time: daily -> 6 hourly -> 3 hourly

Future Applications

- Amount of precipitation above climatology mean/median of ensemble mean/median
- Probabilistic anomaly forecast:
 - Probability of exceeding one standard deviation of climatology
 - Probability of exceeding two standard deviations of climatology
 - Probability of exceeding three standard deviations of climatology
- Verification
 - Probabilistic evaluation (GEFS standard package) should have precipitation evaluation